This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imval2 | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 4 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 5 | divcan4 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) | |
| 6 | 3 4 5 | mp3an23 | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ℑ ‘ 𝐴 ) ) |
| 8 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | ax-icn | ⊢ i ∈ ℂ | |
| 11 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 12 | 10 2 11 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 13 | 9 12 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 14 | 13 9 12 | subsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 15 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 16 | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 17 | 15 16 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 18 | 12 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 19 | mulcom | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) ) | |
| 20 | 3 19 | mpan2 | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) ) |
| 21 | 2cn | ⊢ 2 ∈ ℂ | |
| 22 | mulass | ⊢ ( ( 2 ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 23 | 21 10 22 | mp3an12 | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( 2 · i ) · ( ℑ ‘ 𝐴 ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 25 | 2 24 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 2 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 26 | 9 12 | pncan2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 27 | 26 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 28 | 18 25 27 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ℜ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 29 | 14 17 28 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) = ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) · ( 2 · i ) ) / ( 2 · i ) ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 31 | 7 30 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |