This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinvdif | ⊢ ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif0 | ⊢ ( V ∖ ∅ ) = V | |
| 2 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
| 3 | 2 | difeq2i | ⊢ ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) = ( V ∖ ∅ ) |
| 4 | 0iin | ⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = V | |
| 5 | 1 3 4 | 3eqtr4ri | ⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) |
| 6 | iineq1 | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) ) | |
| 7 | iuneq1 | ⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) | |
| 8 | 7 | difeq2d | ⊢ ( 𝐴 = ∅ → ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) ) |
| 9 | 5 6 8 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 10 | iindif2 | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 11 | 9 10 | pm2.61ine | ⊢ ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) |