This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinvdif | |- |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif0 | |- ( _V \ (/) ) = _V |
|
| 2 | 0iun | |- U_ x e. (/) B = (/) |
|
| 3 | 2 | difeq2i | |- ( _V \ U_ x e. (/) B ) = ( _V \ (/) ) |
| 4 | 0iin | |- |^|_ x e. (/) ( _V \ B ) = _V |
|
| 5 | 1 3 4 | 3eqtr4ri | |- |^|_ x e. (/) ( _V \ B ) = ( _V \ U_ x e. (/) B ) |
| 6 | iineq1 | |- ( A = (/) -> |^|_ x e. A ( _V \ B ) = |^|_ x e. (/) ( _V \ B ) ) |
|
| 7 | iuneq1 | |- ( A = (/) -> U_ x e. A B = U_ x e. (/) B ) |
|
| 8 | 7 | difeq2d | |- ( A = (/) -> ( _V \ U_ x e. A B ) = ( _V \ U_ x e. (/) B ) ) |
| 9 | 5 6 8 | 3eqtr4a | |- ( A = (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) |
| 10 | iindif2 | |- ( A =/= (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) |
|
| 11 | 9 10 | pm2.61ine | |- |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) |