This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) | |
| 3 | ifcl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V ) | |
| 4 | ifeqor | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ∨ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 5 | elprg | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V → ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ { 𝐴 , 𝐵 } ↔ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ∨ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ { 𝐴 , 𝐵 } ) |
| 7 | 3 6 | syl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ { 𝐴 , 𝐵 } ) |
| 8 | 1 2 7 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ { 𝐴 , 𝐵 } ) |