This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | z2ge | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑘 ∈ ℤ ( 𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
| 3 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) | |
| 6 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) | |
| 7 | 5 6 | jca | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∧ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 8 | 3 4 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∧ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 9 | breq2 | ⊢ ( 𝑘 = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) → ( 𝑀 ≤ 𝑘 ↔ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) | |
| 10 | breq2 | ⊢ ( 𝑘 = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) → ( 𝑁 ≤ 𝑘 ↔ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑘 = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) → ( ( 𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘 ) ↔ ( 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∧ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ∧ ( 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∧ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) → ∃ 𝑘 ∈ ℤ ( 𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘 ) ) |
| 13 | 2 8 12 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑘 ∈ ℤ ( 𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘 ) ) |