This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idref | |- ( ( _I |` A ) C_ R <-> A. x e. A x R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. A |-> <. x , x >. ) = ( x e. A |-> <. x , x >. ) |
|
| 2 | 1 | fmpt | |- ( A. x e. A <. x , x >. e. R <-> ( x e. A |-> <. x , x >. ) : A --> R ) |
| 3 | opex | |- <. x , x >. e. _V |
|
| 4 | 3 1 | fnmpti | |- ( x e. A |-> <. x , x >. ) Fn A |
| 5 | df-f | |- ( ( x e. A |-> <. x , x >. ) : A --> R <-> ( ( x e. A |-> <. x , x >. ) Fn A /\ ran ( x e. A |-> <. x , x >. ) C_ R ) ) |
|
| 6 | 4 5 | mpbiran | |- ( ( x e. A |-> <. x , x >. ) : A --> R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
| 7 | 2 6 | bitri | |- ( A. x e. A <. x , x >. e. R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
| 8 | df-br | |- ( x R x <-> <. x , x >. e. R ) |
|
| 9 | 8 | ralbii | |- ( A. x e. A x R x <-> A. x e. A <. x , x >. e. R ) |
| 10 | mptresid | |- ( _I |` A ) = ( x e. A |-> x ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | 11 | fnasrn | |- ( x e. A |-> x ) = ran ( x e. A |-> <. x , x >. ) |
| 13 | 10 12 | eqtri | |- ( _I |` A ) = ran ( x e. A |-> <. x , x >. ) |
| 14 | 13 | sseq1i | |- ( ( _I |` A ) C_ R <-> ran ( x e. A |-> <. x , x >. ) C_ R ) |
| 15 | 7 9 14 | 3bitr4ri | |- ( ( _I |` A ) C_ R <-> A. x e. A x R x ) |