This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | idfu1st | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | 1 2 3 4 | idfuval | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( 1st ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) ) |
| 7 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 8 | resiexg | ⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) | |
| 9 | 7 8 | ax-mp | ⊢ ( I ↾ 𝐵 ) ∈ V |
| 10 | 7 7 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 11 | 10 | mptex | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ V |
| 12 | 9 11 | op1st | ⊢ ( 1st ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) = ( I ↾ 𝐵 ) |
| 13 | 6 12 | eqtrdi | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |