This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | icoshftf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↦ ( 𝑥 + 𝐶 ) ) | |
| Assertion | icoshftf1o | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐹 : ( 𝐴 [,) 𝐵 ) –1-1-onto→ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoshftf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↦ ( 𝑥 + 𝐶 ) ) | |
| 2 | icoshft | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝑥 + 𝐶 ) ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ) | |
| 3 | 2 | ralrimiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∀ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ( 𝑥 + 𝐶 ) ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) |
| 4 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐶 ) ∈ ℝ ) | |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐶 ) ∈ ℝ ) |
| 6 | readdcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 8 | renegcl | ⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → - 𝐶 ∈ ℝ ) |
| 10 | icoshft | ⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → ( 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) → ( 𝑦 + - 𝐶 ) ∈ ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) [,) ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) ) ) | |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) → ( 𝑦 + - 𝐶 ) ∈ ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) [,) ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( 𝑦 + - 𝐶 ) ∈ ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) [,) ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) ) |
| 13 | 7 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 14 | icossre | ⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ⊆ ℝ ) | |
| 15 | 5 13 14 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ⊆ ℝ ) |
| 16 | 15 | sselda | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝑦 ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝑦 ∈ ℂ ) |
| 18 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝐶 ∈ ℝ ) | |
| 19 | 18 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝐶 ∈ ℂ ) |
| 20 | 17 19 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( 𝑦 + - 𝐶 ) = ( 𝑦 − 𝐶 ) ) |
| 21 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
| 22 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 23 | 22 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 24 | 21 23 | negsubd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) + - 𝐶 ) = ( ( 𝐴 + 𝐶 ) − 𝐶 ) ) |
| 25 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 26 | 25 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 27 | 26 23 | pncand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 ) |
| 28 | 24 27 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) + - 𝐶 ) = 𝐴 ) |
| 29 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 30 | 29 23 | negsubd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) + - 𝐶 ) = ( ( 𝐵 + 𝐶 ) − 𝐶 ) ) |
| 31 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 32 | 31 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 33 | 32 23 | pncand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) − 𝐶 ) = 𝐵 ) |
| 34 | 30 33 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + 𝐶 ) + - 𝐶 ) = 𝐵 ) |
| 35 | 28 34 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) [,) ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) [,) ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 37 | 12 20 36 | 3eltr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( 𝑦 − 𝐶 ) ∈ ( 𝐴 [,) 𝐵 ) ) |
| 38 | reueq | ⊢ ( ( 𝑦 − 𝐶 ) ∈ ( 𝐴 [,) 𝐵 ) ↔ ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑥 = ( 𝑦 − 𝐶 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑥 = ( 𝑦 − 𝐶 ) ) |
| 40 | 16 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 41 | 40 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑦 ∈ ℂ ) |
| 42 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ ) | |
| 43 | 42 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 44 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝐴 ∈ ℝ ) | |
| 45 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝐵 ∈ ℝ ) | |
| 46 | 45 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → 𝐵 ∈ ℝ* ) |
| 47 | icossre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) | |
| 48 | 44 46 47 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
| 49 | 48 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 50 | 49 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 51 | 41 43 50 | subadd2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑦 − 𝐶 ) = 𝑥 ↔ ( 𝑥 + 𝐶 ) = 𝑦 ) ) |
| 52 | eqcom | ⊢ ( 𝑥 = ( 𝑦 − 𝐶 ) ↔ ( 𝑦 − 𝐶 ) = 𝑥 ) | |
| 53 | eqcom | ⊢ ( 𝑦 = ( 𝑥 + 𝐶 ) ↔ ( 𝑥 + 𝐶 ) = 𝑦 ) | |
| 54 | 51 52 53 | 3bitr4g | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑥 = ( 𝑦 − 𝐶 ) ↔ 𝑦 = ( 𝑥 + 𝐶 ) ) ) |
| 55 | 54 | reubidva | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ( ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑥 = ( 𝑦 − 𝐶 ) ↔ ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑦 = ( 𝑥 + 𝐶 ) ) ) |
| 56 | 39 55 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) → ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑦 = ( 𝑥 + 𝐶 ) ) |
| 57 | 56 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∀ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑦 = ( 𝑥 + 𝐶 ) ) |
| 58 | 1 | f1ompt | ⊢ ( 𝐹 : ( 𝐴 [,) 𝐵 ) –1-1-onto→ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ( 𝑥 + 𝐶 ) ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ∧ ∀ 𝑦 ∈ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ∃! 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝑦 = ( 𝑥 + 𝐶 ) ) ) |
| 59 | 3 57 58 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐹 : ( 𝐴 [,) 𝐵 ) –1-1-onto→ ( ( 𝐴 + 𝐶 ) [,) ( 𝐵 + 𝐶 ) ) ) |