This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvadd12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) ) |
| 4 | ax-hvass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) ) | |
| 5 | ax-hvass | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) ) | |
| 6 | 5 | 3com12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) +ℎ 𝐶 ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) ) |
| 7 | 3 4 6 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ 𝐶 ) ) ) |