This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/ . This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional R We A antecedent. The element B is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | htalem.1 | ⊢ 𝐴 ∈ V | |
| htalem.2 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) | ||
| Assertion | htalem | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htalem.1 | ⊢ 𝐴 ∈ V | |
| 2 | htalem.2 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) | |
| 3 | simpl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝑅 We 𝐴 ) | |
| 4 | 1 | a1i | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V ) |
| 5 | ssidd | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝐴 ) | |
| 6 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 7 | wereu | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) | |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 9 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ∈ 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ∈ 𝐴 ) |
| 11 | 2 10 | eqeltrid | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ 𝐴 ) |