This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/ . This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional R We A antecedent. The element B is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | htalem.1 | |- A e. _V |
|
| htalem.2 | |- B = ( iota_ x e. A A. y e. A -. y R x ) |
||
| Assertion | htalem | |- ( ( R We A /\ A =/= (/) ) -> B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htalem.1 | |- A e. _V |
|
| 2 | htalem.2 | |- B = ( iota_ x e. A A. y e. A -. y R x ) |
|
| 3 | simpl | |- ( ( R We A /\ A =/= (/) ) -> R We A ) |
|
| 4 | 1 | a1i | |- ( ( R We A /\ A =/= (/) ) -> A e. _V ) |
| 5 | ssidd | |- ( ( R We A /\ A =/= (/) ) -> A C_ A ) |
|
| 6 | simpr | |- ( ( R We A /\ A =/= (/) ) -> A =/= (/) ) |
|
| 7 | wereu | |- ( ( R We A /\ ( A e. _V /\ A C_ A /\ A =/= (/) ) ) -> E! x e. A A. y e. A -. y R x ) |
|
| 8 | 3 4 5 6 7 | syl13anc | |- ( ( R We A /\ A =/= (/) ) -> E! x e. A A. y e. A -. y R x ) |
| 9 | riotacl | |- ( E! x e. A A. y e. A -. y R x -> ( iota_ x e. A A. y e. A -. y R x ) e. A ) |
|
| 10 | 8 9 | syl | |- ( ( R We A /\ A =/= (/) ) -> ( iota_ x e. A A. y e. A -. y R x ) e. A ) |
| 11 | 2 10 | eqeltrid | |- ( ( R We A /\ A =/= (/) ) -> B e. A ) |