This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hosubcl | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) : ~H --> ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S -op T ) = ( if ( S : ~H --> ~H , S , 0hop ) -op T ) ) |
|
| 2 | 1 | feq1d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( S -op T ) : ~H --> ~H <-> ( if ( S : ~H --> ~H , S , 0hop ) -op T ) : ~H --> ~H ) ) |
| 3 | oveq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) -op T ) = ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 4 | 3 | feq1d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( S : ~H --> ~H , S , 0hop ) -op T ) : ~H --> ~H <-> ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) : ~H --> ~H ) ) |
| 5 | ho0f | |- 0hop : ~H --> ~H |
|
| 6 | 5 | elimf | |- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 7 | 5 | elimf | |- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 8 | 6 7 | hosubcli | |- ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) : ~H --> ~H |
| 9 | 2 4 8 | dedth2h | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) : ~H --> ~H ) |