This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hommval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 1 | elmap | ⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
| 3 | oveq1 | ⊢ ( 𝑓 = 𝐴 → ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 4 | 3 | mpteq2dv | ⊢ ( 𝑓 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 5 | fveq1 | ⊢ ( 𝑔 = 𝑇 → ( 𝑔 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝑔 = 𝑇 → ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 | 6 | mpteq2dv | ⊢ ( 𝑔 = 𝑇 → ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 8 | df-homul | ⊢ ·op = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 9 | 1 | mptex | ⊢ ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 10 | 4 7 8 9 | ovmpo | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑m ℋ ) ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 | 2 10 | sylan2br | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |