This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hodcl | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hodval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
| 4 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 6 | hvsubcl | ⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) |
| 8 | 1 7 | eqeltrd | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |