This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem homarw

Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwhoma.h H = Hom a C
Assertion homarw X H Y A

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwhoma.h H = Hom a C
3 ovssunirn X H Y ran H
4 1 2 arwval A = ran H
5 3 4 sseqtrri X H Y A