This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoddi.1 | ⊢ 𝑅 ∈ LinOp | |
| hoddi.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
| hoddi.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hoddii | ⊢ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoddi.1 | ⊢ 𝑅 ∈ LinOp | |
| 2 | hoddi.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 3 | hoddi.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 4 | 2 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 5 | 3 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 6 | 1 | lnopsubi | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 8 | hodval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 9 | 2 3 8 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) = ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 | 1 | lnopfi | ⊢ 𝑅 : ℋ ⟶ ℋ |
| 12 | 11 2 | hocoi | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
| 13 | 11 3 | hocoi | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 15 | 7 10 14 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 16 | 2 3 | hosubcli | ⊢ ( 𝑆 −op 𝑇 ) : ℋ ⟶ ℋ |
| 17 | 11 16 | hocoi | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) ) |
| 18 | 11 2 | hocofi | ⊢ ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ |
| 19 | 11 3 | hocofi | ⊢ ( 𝑅 ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 20 | hodval | ⊢ ( ( ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( 𝑅 ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) | |
| 21 | 18 19 20 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 22 | 15 17 21 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) ) |
| 23 | 22 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) |
| 24 | 11 16 | hocofi | ⊢ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) : ℋ ⟶ ℋ |
| 25 | 18 19 | hosubcli | ⊢ ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) : ℋ ⟶ ℋ |
| 26 | 24 25 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) ↔ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ) |
| 27 | 23 26 | mpbi | ⊢ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) |