This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hocoi | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 2 | hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 3 | fvco3 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |