This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlpar2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| hlpar2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| hlpar2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| hlpar2.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | hlpar2 | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlpar2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | hlpar2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | hlpar2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | hlpar2.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | hlph | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) | |
| 6 | 1 2 3 4 | phpar2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |