This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015) (Proof shortened by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsnlei | ⊢ ( { 𝐴 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi | ⊢ { 𝐴 } ∈ Fin | |
| 2 | hashsnle1 | ⊢ ( ♯ ‘ { 𝐴 } ) ≤ 1 | |
| 3 | 1 2 | pm3.2i | ⊢ ( { 𝐴 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) |