This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashp1i.1 | ⊢ 𝐴 ∈ ω | |
| hashp1i.2 | ⊢ 𝐵 = suc 𝐴 | ||
| hashp1i.3 | ⊢ ( ♯ ‘ 𝐴 ) = 𝑀 | ||
| hashp1i.4 | ⊢ ( 𝑀 + 1 ) = 𝑁 | ||
| Assertion | hashp1i | ⊢ ( ♯ ‘ 𝐵 ) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashp1i.1 | ⊢ 𝐴 ∈ ω | |
| 2 | hashp1i.2 | ⊢ 𝐵 = suc 𝐴 | |
| 3 | hashp1i.3 | ⊢ ( ♯ ‘ 𝐴 ) = 𝑀 | |
| 4 | hashp1i.4 | ⊢ ( 𝑀 + 1 ) = 𝑁 | |
| 5 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 6 | 2 5 | eqtri | ⊢ 𝐵 = ( 𝐴 ∪ { 𝐴 } ) |
| 7 | 6 | fveq2i | ⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) |
| 8 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 9 | 1 8 | ax-mp | ⊢ 𝐴 ∈ Fin |
| 10 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 11 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 12 | 1 10 11 | mp2b | ⊢ ¬ 𝐴 ∈ 𝐴 |
| 13 | hashunsng | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) | |
| 14 | 1 13 | ax-mp | ⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 15 | 9 12 14 | mp2an | ⊢ ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) |
| 16 | 3 | oveq1i | ⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) = ( 𝑀 + 1 ) |
| 17 | 16 4 | eqtri | ⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) = 𝑁 |
| 18 | 15 17 | eqtri | ⊢ ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = 𝑁 |
| 19 | 7 18 | eqtri | ⊢ ( ♯ ‘ 𝐵 ) = 𝑁 |