This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashp1i.1 | |- A e. _om |
|
| hashp1i.2 | |- B = suc A |
||
| hashp1i.3 | |- ( # ` A ) = M |
||
| hashp1i.4 | |- ( M + 1 ) = N |
||
| Assertion | hashp1i | |- ( # ` B ) = N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashp1i.1 | |- A e. _om |
|
| 2 | hashp1i.2 | |- B = suc A |
|
| 3 | hashp1i.3 | |- ( # ` A ) = M |
|
| 4 | hashp1i.4 | |- ( M + 1 ) = N |
|
| 5 | df-suc | |- suc A = ( A u. { A } ) |
|
| 6 | 2 5 | eqtri | |- B = ( A u. { A } ) |
| 7 | 6 | fveq2i | |- ( # ` B ) = ( # ` ( A u. { A } ) ) |
| 8 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 9 | 1 8 | ax-mp | |- A e. Fin |
| 10 | nnord | |- ( A e. _om -> Ord A ) |
|
| 11 | ordirr | |- ( Ord A -> -. A e. A ) |
|
| 12 | 1 10 11 | mp2b | |- -. A e. A |
| 13 | hashunsng | |- ( A e. _om -> ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) ) |
|
| 14 | 1 13 | ax-mp | |- ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) |
| 15 | 9 12 14 | mp2an | |- ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) |
| 16 | 3 | oveq1i | |- ( ( # ` A ) + 1 ) = ( M + 1 ) |
| 17 | 16 4 | eqtri | |- ( ( # ` A ) + 1 ) = N |
| 18 | 15 17 | eqtri | |- ( # ` ( A u. { A } ) ) = N |
| 19 | 7 18 | eqtri | |- ( # ` B ) = N |