This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfzp1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 2 | eluzelre | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | 2 | ltp1d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 < ( 𝐵 + 1 ) ) |
| 4 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 5 | peano2z | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) ∈ ℤ ) | |
| 6 | 5 | ancri | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 7 | fzn | ⊢ ( ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 < ( 𝐵 + 1 ) ↔ ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 < ( 𝐵 + 1 ) ↔ ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) ) |
| 9 | 3 8 | mpbid | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
| 11 | 4 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 | 11 | subidd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 13 | 1 10 12 | 3eqtr4a | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐵 ) ) |
| 14 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 + 1 ) = ( 𝐵 + 1 ) ) | |
| 15 | 14 | fvoveq1d | ⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) ) |
| 16 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐵 ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ↔ ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐵 ) ) ) |
| 18 | 13 17 | imbitrrid | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 19 | uzp1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 ∨ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) | |
| 20 | pm2.24 | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) | |
| 21 | 20 | eqcoms | ⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
| 22 | ax-1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) | |
| 23 | 21 22 | jaoi | ⊢ ( ( 𝐵 = 𝐴 ∨ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
| 24 | 19 23 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
| 25 | 24 | impcom | ⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) |
| 26 | hashfz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) ) |
| 28 | eluzel2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 29 | 28 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 30 | 1cnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) | |
| 31 | 11 29 30 | nppcan2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 32 | 31 | adantl | ⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 33 | 27 32 | eqtrd | ⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 34 | 33 | ex | ⊢ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 35 | 18 34 | pm2.61i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |