This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | nppcan2d | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | nppcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) |