This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | h1datom | |- ( ( A e. CH /\ B e. ~H ) -> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) <-> if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { B } ) ) ) ) |
|
| 2 | eqeq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) <-> if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) ) ) |
|
| 3 | eqeq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A = 0H <-> if ( A e. CH , A , 0H ) = 0H ) ) |
|
| 4 | 2 3 | orbi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) <-> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) ) |
| 5 | 1 4 | imbi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) ) <-> ( if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) ) ) |
| 6 | sneq | |- ( B = if ( B e. ~H , B , 0h ) -> { B } = { if ( B e. ~H , B , 0h ) } ) |
|
| 7 | 6 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( _|_ ` { B } ) = ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) |
| 8 | 7 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( _|_ ` ( _|_ ` { B } ) ) = ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) ) |
| 9 | 8 | sseq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { B } ) ) <-> if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) ) ) |
| 10 | 8 | eqeq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) <-> if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) ) ) |
| 11 | 10 | orbi1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) <-> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) ) |
| 12 | 9 11 | imbi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { B } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) <-> ( if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) -> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) ) ) |
| 13 | h0elch | |- 0H e. CH |
|
| 14 | 13 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 15 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 16 | 14 15 | h1datomi | |- ( if ( A e. CH , A , 0H ) C_ ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) -> ( if ( A e. CH , A , 0H ) = ( _|_ ` ( _|_ ` { if ( B e. ~H , B , 0h ) } ) ) \/ if ( A e. CH , A , 0H ) = 0H ) ) |
| 17 | 5 12 16 | dedth2h | |- ( ( A e. CH /\ B e. ~H ) -> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) ) ) |