This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzmulcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 · 𝐵 ) ∈ ℤ[i] ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 2 | gzcn | ⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 5 | remul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 7 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 8 | 7 | simp2bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 9 | elgz | ⊢ ( 𝐵 ∈ ℤ[i] ↔ ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) | |
| 10 | 9 | simp2bi | ⊢ ( 𝐵 ∈ ℤ[i] → ( ℜ ‘ 𝐵 ) ∈ ℤ ) |
| 11 | zmulcl | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) |
| 13 | 7 | simp3bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 14 | 9 | simp3bi | ⊢ ( 𝐵 ∈ ℤ[i] → ( ℑ ‘ 𝐵 ) ∈ ℤ ) |
| 15 | zmulcl | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) |
| 17 | 12 16 | zsubcld | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 18 | 6 17 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℤ ) |
| 19 | immul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) | |
| 20 | 1 2 19 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 21 | zmulcl | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 22 | 8 14 21 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) |
| 23 | zmulcl | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℤ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 24 | 13 10 23 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) |
| 25 | 22 24 | zaddcld | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 26 | 20 25 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℤ ) |
| 27 | elgz | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℤ[i] ↔ ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℤ ∧ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℤ ) ) | |
| 28 | 4 18 26 27 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 · 𝐵 ) ∈ ℤ[i] ) |