This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize a specific 2-element group L to show that any set K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grppropstr.b | ⊢ ( Base ‘ 𝐾 ) = 𝐵 | |
| grppropstr.p | ⊢ ( +g ‘ 𝐾 ) = + | ||
| grppropstr.l | ⊢ 𝐿 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | ||
| Assertion | grppropstr | ⊢ ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropstr.b | ⊢ ( Base ‘ 𝐾 ) = 𝐵 | |
| 2 | grppropstr.p | ⊢ ( +g ‘ 𝐾 ) = + | |
| 3 | grppropstr.l | ⊢ 𝐿 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
| 4 | fvex | ⊢ ( Base ‘ 𝐾 ) ∈ V | |
| 5 | 1 4 | eqeltrri | ⊢ 𝐵 ∈ V |
| 6 | 3 | grpbase | ⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 7 | 5 6 | ax-mp | ⊢ 𝐵 = ( Base ‘ 𝐿 ) |
| 8 | 1 7 | eqtri | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) |
| 9 | fvex | ⊢ ( +g ‘ 𝐾 ) ∈ V | |
| 10 | 2 9 | eqeltrri | ⊢ + ∈ V |
| 11 | 3 | grpplusg | ⊢ ( + ∈ V → + = ( +g ‘ 𝐿 ) ) |
| 12 | 10 11 | ax-mp | ⊢ + = ( +g ‘ 𝐿 ) |
| 13 | 2 12 | eqtri | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) |
| 14 | 8 13 | grpprop | ⊢ ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) |