This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize a specific 2-element group L to show that any set K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grppropstr.b | ||
| grppropstr.p | |||
| grppropstr.l | |||
| Assertion | grppropstr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropstr.b | ||
| 2 | grppropstr.p | ||
| 3 | grppropstr.l | ||
| 4 | fvex | ||
| 5 | 1 4 | eqeltrri | |
| 6 | 3 | grpbase | |
| 7 | 5 6 | ax-mp | |
| 8 | 1 7 | eqtri | |
| 9 | fvex | ||
| 10 | 2 9 | eqeltrri | |
| 11 | 3 | grpplusg | |
| 12 | 10 11 | ax-mp | |
| 13 | 2 12 | eqtri | |
| 14 | 8 13 | grpprop |