This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpon0 | ⊢ ( 𝐺 ∈ GrpOp → 𝑋 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | grpolidinv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
| 3 | rexn0 | ⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → 𝑋 ≠ ∅ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ GrpOp → 𝑋 ≠ ∅ ) |