This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the left group action of element A of group G at B . (Contributed by Paul Chapman, 18-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | grplactval | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| 2 | grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| 4 | 3 | fveq1d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ‘ 𝐵 ) ) |
| 5 | oveq2 | ⊢ ( 𝑎 = 𝐵 → ( 𝐴 + 𝑎 ) = ( 𝐴 + 𝐵 ) ) | |
| 6 | eqid | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) | |
| 7 | ovex | ⊢ ( 𝐴 + 𝐵 ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ‘ 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 9 | 4 8 | sylan9eq | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐴 + 𝐵 ) ) |