This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the left group action of element A of group G at B . (Contributed by Paul Chapman, 18-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | |- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
|
| grplact.2 | |- X = ( Base ` G ) |
||
| Assertion | grplactval | |- ( ( A e. X /\ B e. X ) -> ( ( F ` A ) ` B ) = ( A .+ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | |- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
|
| 2 | grplact.2 | |- X = ( Base ` G ) |
|
| 3 | 1 2 | grplactfval | |- ( A e. X -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
| 4 | 3 | fveq1d | |- ( A e. X -> ( ( F ` A ) ` B ) = ( ( a e. X |-> ( A .+ a ) ) ` B ) ) |
| 5 | oveq2 | |- ( a = B -> ( A .+ a ) = ( A .+ B ) ) |
|
| 6 | eqid | |- ( a e. X |-> ( A .+ a ) ) = ( a e. X |-> ( A .+ a ) ) |
|
| 7 | ovex | |- ( A .+ B ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( B e. X -> ( ( a e. X |-> ( A .+ a ) ) ` B ) = ( A .+ B ) ) |
| 9 | 4 8 | sylan9eq | |- ( ( A e. X /\ B e. X ) -> ( ( F ` A ) ` B ) = ( A .+ B ) ) |