This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlimfn | ⊢ GraphLocIso Fn ( V × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim | ⊢ GraphLocIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) | |
| 2 | fvex | ⊢ ( Vtx ‘ ℎ ) ∈ V | |
| 3 | f1of | ⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( Vtx ‘ ℎ ) ∈ V ∧ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
| 5 | fvexd | ⊢ ( ( Vtx ‘ ℎ ) ∈ V → ( Vtx ‘ 𝑔 ) ∈ V ) | |
| 6 | id | ⊢ ( ( Vtx ‘ ℎ ) ∈ V → ( Vtx ‘ ℎ ) ∈ V ) | |
| 7 | 4 5 6 | fabexd | ⊢ ( ( Vtx ‘ ℎ ) ∈ V → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ∈ V ) |
| 8 | 2 7 | ax-mp | ⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ∈ V |
| 9 | 1 8 | fnmpoi | ⊢ GraphLocIso Fn ( V × V ) |