This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlimfn | |- GraphLocIso Fn ( _V X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim | |- GraphLocIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } ) |
|
| 2 | fvex | |- ( Vtx ` h ) e. _V |
|
| 3 | f1of | |- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) -> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
|
| 4 | 3 | ad2antrl | |- ( ( ( Vtx ` h ) e. _V /\ ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) ) -> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
| 5 | fvexd | |- ( ( Vtx ` h ) e. _V -> ( Vtx ` g ) e. _V ) |
|
| 6 | id | |- ( ( Vtx ` h ) e. _V -> ( Vtx ` h ) e. _V ) |
|
| 7 | 4 5 6 | fabexd | |- ( ( Vtx ` h ) e. _V -> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } e. _V ) |
| 8 | 2 7 | ax-mp | |- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } e. _V |
| 9 | 1 8 | fnmpoi | |- GraphLocIso Fn ( _V X. _V ) |