This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | griedg0prc.u | ⊢ 𝑈 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } | |
| Assertion | griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | griedg0prc.u | ⊢ 𝑈 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } | |
| 2 | 1 | eleq2i | ⊢ ( 𝑔 ∈ 𝑈 ↔ 𝑔 ∈ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ) |
| 3 | elopab | ⊢ ( 𝑔 ∈ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ↔ ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝑔 ∈ 𝑈 ↔ ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) ) |
| 5 | opex | ⊢ 〈 𝑣 , 𝑒 〉 ∈ V | |
| 6 | 5 | a1i | ⊢ ( 𝑒 : ∅ ⟶ ∅ → 〈 𝑣 , 𝑒 〉 ∈ V ) |
| 7 | vex | ⊢ 𝑣 ∈ V | |
| 8 | vex | ⊢ 𝑒 ∈ V | |
| 9 | 7 8 | opiedgfvi | ⊢ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = 𝑒 |
| 10 | f0bi | ⊢ ( 𝑒 : ∅ ⟶ ∅ ↔ 𝑒 = ∅ ) | |
| 11 | 10 | biimpi | ⊢ ( 𝑒 : ∅ ⟶ ∅ → 𝑒 = ∅ ) |
| 12 | 9 11 | eqtrid | ⊢ ( 𝑒 : ∅ ⟶ ∅ → ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) |
| 13 | 6 12 | usgr0e | ⊢ ( 𝑒 : ∅ ⟶ ∅ → 〈 𝑣 , 𝑒 〉 ∈ USGraph ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → 〈 𝑣 , 𝑒 〉 ∈ USGraph ) |
| 15 | eleq1 | ⊢ ( 𝑔 = 〈 𝑣 , 𝑒 〉 → ( 𝑔 ∈ USGraph ↔ 〈 𝑣 , 𝑒 〉 ∈ USGraph ) ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → ( 𝑔 ∈ USGraph ↔ 〈 𝑣 , 𝑒 〉 ∈ USGraph ) ) |
| 17 | 14 16 | mpbird | ⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑔 ∈ USGraph ) |
| 18 | 17 | exlimivv | ⊢ ( ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑔 ∈ USGraph ) |
| 19 | 4 18 | sylbi | ⊢ ( 𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph ) |
| 20 | 19 | ssriv | ⊢ 𝑈 ⊆ USGraph |