This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of membership. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) e.g 1o ) actually means v_0 e. v_1 , not 0 e. 1 . (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-goel | ⊢ ∈𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ 〈 ∅ , 𝑥 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgoe | ⊢ ∈𝑔 | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | com | ⊢ ω | |
| 3 | 2 2 | cxp | ⊢ ( ω × ω ) |
| 4 | c0 | ⊢ ∅ | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 4 5 | cop | ⊢ 〈 ∅ , 𝑥 〉 |
| 7 | 1 3 6 | cmpt | ⊢ ( 𝑥 ∈ ( ω × ω ) ↦ 〈 ∅ , 𝑥 〉 ) |
| 8 | 0 7 | wceq | ⊢ ∈𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ 〈 ∅ , 𝑥 〉 ) |