This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gicqusker.1 | ||
| gicqusker.f | |||
| gicqusker.k | |||
| gicqusker.q | |||
| gicqusker.s | |||
| Assertion | gicqusker |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gicqusker.1 | ||
| 2 | gicqusker.f | ||
| 3 | gicqusker.k | ||
| 4 | gicqusker.q | ||
| 5 | gicqusker.s | ||
| 6 | imaeq2 | ||
| 7 | 6 | unieqd | |
| 8 | 7 | cbvmptv | |
| 9 | 1 2 3 4 8 5 | ghmqusker | |
| 10 | brgici | ||
| 11 | 9 10 | syl |