This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0xmulcl | ⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxrge0 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) | |
| 2 | elxrge0 | ⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) | |
| 3 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) | |
| 4 | 3 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
| 5 | xmulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 ·e 𝐵 ) ) | |
| 6 | elxrge0 | ⊢ ( ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐴 ·e 𝐵 ) ) ) | |
| 7 | 4 5 6 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 8 | 1 2 7 | syl2anb | ⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ·e 𝐵 ) ∈ ( 0 [,] +∞ ) ) |