This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by AV, 12-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdmultiplez | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 5 | 2 4 | mulcomd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) ) |
| 7 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℕ0 ) |
| 9 | simpr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 10 | 8 9 | gcdmultipled | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) = 𝑀 ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |