This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by AV, 12-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdmultiplez | |- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 2 | 1 | adantr | |- ( ( M e. NN /\ N e. ZZ ) -> M e. CC ) |
| 3 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 4 | 3 | adantl | |- ( ( M e. NN /\ N e. ZZ ) -> N e. CC ) |
| 5 | 2 4 | mulcomd | |- ( ( M e. NN /\ N e. ZZ ) -> ( M x. N ) = ( N x. M ) ) |
| 6 | 5 | oveq2d | |- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = ( M gcd ( N x. M ) ) ) |
| 7 | nnnn0 | |- ( M e. NN -> M e. NN0 ) |
|
| 8 | 7 | adantr | |- ( ( M e. NN /\ N e. ZZ ) -> M e. NN0 ) |
| 9 | simpr | |- ( ( M e. NN /\ N e. ZZ ) -> N e. ZZ ) |
|
| 10 | 8 9 | gcdmultipled | |- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( N x. M ) ) = M ) |
| 11 | 6 10 | eqtrd | |- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = M ) |