This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdf | ⊢ gcd : ( ℤ × ℤ ) ⟶ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdval | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 gcd 𝑦 ) = if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) | |
| 2 | gcdcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 gcd 𝑦 ) ∈ ℕ0 ) | |
| 3 | 1 2 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 ) |
| 4 | 3 | rgen2 | ⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 |
| 5 | df-gcd | ⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) | |
| 6 | 5 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ∈ ℕ0 ↔ gcd : ( ℤ × ℤ ) ⟶ ℕ0 ) |
| 7 | 4 6 | mpbi | ⊢ gcd : ( ℤ × ℤ ) ⟶ ℕ0 |