This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvresex.1 | ⊢ 𝐴 ∈ V | |
| Assertion | fvresex | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvresex.1 | ⊢ 𝐴 ∈ V | |
| 2 | ssv | ⊢ 𝐴 ⊆ V | |
| 3 | resmpt | ⊢ ( 𝐴 ⊆ V → ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) |
| 5 | 4 | fveq1i | ⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) |
| 6 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 7 | eqid | ⊢ ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) | |
| 8 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑥 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 10 | 9 | elv | ⊢ ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 11 | fveqres | ⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) |
| 13 | 5 12 | eqtr3i | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) |
| 14 | 13 | eqeq2i | ⊢ ( 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 16 | 15 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) } |
| 17 | 1 | mptex | ⊢ ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ V |
| 18 | 17 | fvclex | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) } ∈ V |
| 19 | 16 18 | eqeltrri | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) } ∈ V |