This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvresex.1 | |- A e. _V |
|
| Assertion | fvresex | |- { y | E. x y = ( ( F |` A ) ` x ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvresex.1 | |- A e. _V |
|
| 2 | ssv | |- A C_ _V |
|
| 3 | resmpt | |- ( A C_ _V -> ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) |
| 5 | 4 | fveq1i | |- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( z e. A |-> ( F ` z ) ) ` x ) |
| 6 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 7 | eqid | |- ( z e. _V |-> ( F ` z ) ) = ( z e. _V |-> ( F ` z ) ) |
|
| 8 | fvex | |- ( F ` x ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( x e. _V -> ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) ) |
| 10 | 9 | elv | |- ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) |
| 11 | fveqres | |- ( ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) -> ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) |
| 13 | 5 12 | eqtr3i | |- ( ( z e. A |-> ( F ` z ) ) ` x ) = ( ( F |` A ) ` x ) |
| 14 | 13 | eqeq2i | |- ( y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> y = ( ( F |` A ) ` x ) ) |
| 15 | 14 | exbii | |- ( E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> E. x y = ( ( F |` A ) ` x ) ) |
| 16 | 15 | abbii | |- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } = { y | E. x y = ( ( F |` A ) ` x ) } |
| 17 | 1 | mptex | |- ( z e. A |-> ( F ` z ) ) e. _V |
| 18 | 17 | fvclex | |- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } e. _V |
| 19 | 16 18 | eqeltrri | |- { y | E. x y = ( ( F |` A ) ` x ) } e. _V |