This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelima2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ ( 𝐹 “ 𝐶 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag | ⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ) |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) |
| 5 | fnbr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 6 | 5 | adantrl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
| 7 | simprl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ 𝐶 ) | |
| 8 | 6 7 | elind | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) |
| 9 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 10 | funbrfv | ⊢ ( Fun 𝐹 → ( 𝑥 𝐹 𝐵 → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) | |
| 11 | 10 | imp | ⊢ ( ( Fun 𝐹 ∧ 𝑥 𝐹 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 12 | 9 11 | sylan | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 13 | 12 | adantrl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 14 | 8 13 | jca | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
| 15 | 14 | ex | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) ) |
| 16 | 15 | eximdv | ⊢ ( 𝐹 Fn 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
| 18 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 20 | 4 19 | sylan2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ ( 𝐹 “ 𝐶 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |