This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelima2 | |- ( ( F Fn A /\ B e. ( F " C ) ) -> E. x e. ( A i^i C ) ( F ` x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag | |- ( B e. ( F " C ) -> ( B e. ( F " C ) <-> E. x e. C x F B ) ) |
|
| 2 | 1 | ibi | |- ( B e. ( F " C ) -> E. x e. C x F B ) |
| 3 | df-rex | |- ( E. x e. C x F B <-> E. x ( x e. C /\ x F B ) ) |
|
| 4 | 2 3 | sylib | |- ( B e. ( F " C ) -> E. x ( x e. C /\ x F B ) ) |
| 5 | fnbr | |- ( ( F Fn A /\ x F B ) -> x e. A ) |
|
| 6 | 5 | adantrl | |- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. A ) |
| 7 | simprl | |- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. C ) |
|
| 8 | 6 7 | elind | |- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. ( A i^i C ) ) |
| 9 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 10 | funbrfv | |- ( Fun F -> ( x F B -> ( F ` x ) = B ) ) |
|
| 11 | 10 | imp | |- ( ( Fun F /\ x F B ) -> ( F ` x ) = B ) |
| 12 | 9 11 | sylan | |- ( ( F Fn A /\ x F B ) -> ( F ` x ) = B ) |
| 13 | 12 | adantrl | |- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> ( F ` x ) = B ) |
| 14 | 8 13 | jca | |- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
| 15 | 14 | ex | |- ( F Fn A -> ( ( x e. C /\ x F B ) -> ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) ) |
| 16 | 15 | eximdv | |- ( F Fn A -> ( E. x ( x e. C /\ x F B ) -> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) ) |
| 17 | 16 | imp | |- ( ( F Fn A /\ E. x ( x e. C /\ x F B ) ) -> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
| 18 | df-rex | |- ( E. x e. ( A i^i C ) ( F ` x ) = B <-> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( F Fn A /\ E. x ( x e. C /\ x F B ) ) -> E. x e. ( A i^i C ) ( F ` x ) = B ) |
| 20 | 4 19 | sylan2 | |- ( ( F Fn A /\ B e. ( F " C ) ) -> E. x e. ( A i^i C ) ( F ` x ) = B ) |