This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvbigcup.1 | ⊢ 𝐴 ∈ V | |
| Assertion | fvbigcup | ⊢ ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvbigcup.1 | ⊢ 𝐴 ∈ V | |
| 2 | eqid | ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 3 | 1 | uniex | ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | brbigcup | ⊢ ( 𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴 ) |
| 5 | 2 4 | mpbir | ⊢ 𝐴 Bigcup ∪ 𝐴 |
| 6 | fnbigcup | ⊢ Bigcup Fn V | |
| 7 | fnbrfvb | ⊢ ( ( Bigcup Fn V ∧ 𝐴 ∈ V ) → ( ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴 ) ) | |
| 8 | 6 1 7 | mp2an | ⊢ ( ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴 ) |
| 9 | 5 8 | mpbir | ⊢ ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 |