This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fv1stcnv | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) ‘ 𝑋 ) = 〈 𝑋 , 𝑌 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg | ⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ { 𝑌 } ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ) |
| 3 | eqid | ⊢ 𝑋 = 𝑋 | |
| 4 | 2 3 | jctir | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 𝑋 = 𝑋 ) ) |
| 5 | opex | ⊢ 〈 𝑋 , 𝑌 〉 ∈ V | |
| 6 | brcnvg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 〈 𝑋 , 𝑌 〉 ∈ V ) → ( 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ↔ 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 𝑋 ) ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ↔ 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 𝑋 ) ) |
| 8 | brres | ⊢ ( 𝑋 ∈ 𝐴 → ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 𝑋 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ) ) | |
| 9 | 7 8 | bitrd | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ) ) |
| 11 | opelxp | ⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ) | |
| 12 | 11 | anbi1i | ⊢ ( ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ) |
| 13 | br1steqg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( 〈 𝑋 , 𝑌 〉 1st 𝑋 ↔ 𝑋 = 𝑋 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 𝑋 = 𝑋 ) ) ) |
| 15 | 12 14 | bitrid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × { 𝑌 } ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑋 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 𝑋 = 𝑋 ) ) ) |
| 16 | 10 15 | bitrd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ { 𝑌 } ) ∧ 𝑋 = 𝑋 ) ) ) |
| 17 | 4 16 | mpbird | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ) |
| 18 | 1stconst | ⊢ ( 𝑌 ∈ 𝑉 → ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) : ( 𝐴 × { 𝑌 } ) –1-1-onto→ 𝐴 ) | |
| 19 | f1ocnv | ⊢ ( ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) : ( 𝐴 × { 𝑌 } ) –1-1-onto→ 𝐴 → ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) : 𝐴 –1-1-onto→ ( 𝐴 × { 𝑌 } ) ) | |
| 20 | f1ofn | ⊢ ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) : 𝐴 –1-1-onto→ ( 𝐴 × { 𝑌 } ) → ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) Fn 𝐴 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝑌 ∈ 𝑉 → ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) Fn 𝐴 ) |
| 22 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝐴 ) | |
| 23 | fnbrfvb | ⊢ ( ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) ‘ 𝑋 ) = 〈 𝑋 , 𝑌 〉 ↔ 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ) ) | |
| 24 | 21 22 23 | syl2an2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) ‘ 𝑋 ) = 〈 𝑋 , 𝑌 〉 ↔ 𝑋 ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) 〈 𝑋 , 𝑌 〉 ) ) |
| 25 | 17 24 | mpbird | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉 ) → ( ◡ ( 1st ↾ ( 𝐴 × { 𝑌 } ) ) ‘ 𝑋 ) = 〈 𝑋 , 𝑌 〉 ) |