This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fv2ndcnv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) ‘ 𝑌 ) = 〈 𝑋 , 𝑌 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ) |
| 3 | eqid | ⊢ 𝑌 = 𝑌 | |
| 4 | 2 3 | jctir | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) |
| 5 | 2ndconst | ⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) : ( { 𝑋 } × 𝐴 ) –1-1-onto→ 𝐴 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) : ( { 𝑋 } × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 7 | f1ocnv | ⊢ ( ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) : ( { 𝑋 } × 𝐴 ) –1-1-onto→ 𝐴 → ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) : 𝐴 –1-1-onto→ ( { 𝑋 } × 𝐴 ) ) | |
| 8 | f1ofn | ⊢ ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) : 𝐴 –1-1-onto→ ( { 𝑋 } × 𝐴 ) → ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) Fn 𝐴 ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) Fn 𝐴 ) |
| 10 | fnbrfvb | ⊢ ( ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) Fn 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) ‘ 𝑌 ) = 〈 𝑋 , 𝑌 〉 ↔ 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ) ) | |
| 11 | 9 10 | sylancom | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) ‘ 𝑌 ) = 〈 𝑋 , 𝑌 〉 ↔ 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ) ) |
| 12 | opex | ⊢ 〈 𝑋 , 𝑌 〉 ∈ V | |
| 13 | brcnvg | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 〈 𝑋 , 𝑌 〉 ∈ V ) → ( 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ↔ 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ) ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ↔ 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ↔ 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ) ) |
| 16 | brres | ⊢ ( 𝑌 ∈ 𝐴 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ) ) |
| 18 | opelxp | ⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝐴 ) ↔ ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ) | |
| 19 | 18 | anbi1i | ⊢ ( ( 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ) |
| 20 | br2ndeqg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 〈 𝑋 , 𝑌 〉 2nd 𝑌 ↔ 𝑌 = 𝑌 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) ) |
| 22 | 19 21 | bitrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ( 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝐴 ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑌 ) ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) ) |
| 23 | 17 22 | bitrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 𝑌 ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) ) |
| 24 | 15 23 | bitrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) 〈 𝑋 , 𝑌 〉 ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) ) |
| 25 | 11 24 | bitrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) ‘ 𝑌 ) = 〈 𝑋 , 𝑌 〉 ↔ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑌 = 𝑌 ) ) ) |
| 26 | 4 25 | mpbird | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( ◡ ( 2nd ↾ ( { 𝑋 } × 𝐴 ) ) ‘ 𝑌 ) = 〈 𝑋 , 𝑌 〉 ) |