This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of specifying a partial function from A to B . (Contributed by NM, 13-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funssxp | |- ( ( Fun F /\ F C_ ( A X. B ) ) <-> ( F : dom F --> B /\ dom F C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 2 | 1 | biimpi | |- ( Fun F -> F Fn dom F ) |
| 3 | rnss | |- ( F C_ ( A X. B ) -> ran F C_ ran ( A X. B ) ) |
|
| 4 | rnxpss | |- ran ( A X. B ) C_ B |
|
| 5 | 3 4 | sstrdi | |- ( F C_ ( A X. B ) -> ran F C_ B ) |
| 6 | 2 5 | anim12i | |- ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F Fn dom F /\ ran F C_ B ) ) |
| 7 | df-f | |- ( F : dom F --> B <-> ( F Fn dom F /\ ran F C_ B ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( Fun F /\ F C_ ( A X. B ) ) -> F : dom F --> B ) |
| 9 | dmss | |- ( F C_ ( A X. B ) -> dom F C_ dom ( A X. B ) ) |
|
| 10 | dmxpss | |- dom ( A X. B ) C_ A |
|
| 11 | 9 10 | sstrdi | |- ( F C_ ( A X. B ) -> dom F C_ A ) |
| 12 | 11 | adantl | |- ( ( Fun F /\ F C_ ( A X. B ) ) -> dom F C_ A ) |
| 13 | 8 12 | jca | |- ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F : dom F --> B /\ dom F C_ A ) ) |
| 14 | ffun | |- ( F : dom F --> B -> Fun F ) |
|
| 15 | 14 | adantr | |- ( ( F : dom F --> B /\ dom F C_ A ) -> Fun F ) |
| 16 | fssxp | |- ( F : dom F --> B -> F C_ ( dom F X. B ) ) |
|
| 17 | xpss1 | |- ( dom F C_ A -> ( dom F X. B ) C_ ( A X. B ) ) |
|
| 18 | 16 17 | sylan9ss | |- ( ( F : dom F --> B /\ dom F C_ A ) -> F C_ ( A X. B ) ) |
| 19 | 15 18 | jca | |- ( ( F : dom F --> B /\ dom F C_ A ) -> ( Fun F /\ F C_ ( A X. B ) ) ) |
| 20 | 13 19 | impbii | |- ( ( Fun F /\ F C_ ( A X. B ) ) <-> ( F : dom F --> B /\ dom F C_ A ) ) |