This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funsndifnop.a | ⊢ 𝐴 ∈ V | |
| funsndifnop.b | ⊢ 𝐵 ∈ V | ||
| funsndifnop.g | ⊢ 𝐺 = { 〈 𝐴 , 𝐵 〉 } | ||
| Assertion | funsneqopb | ⊢ ( 𝐴 = 𝐵 ↔ 𝐺 ∈ ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsndifnop.a | ⊢ 𝐴 ∈ V | |
| 2 | funsndifnop.b | ⊢ 𝐵 ∈ V | |
| 3 | funsndifnop.g | ⊢ 𝐺 = { 〈 𝐴 , 𝐵 〉 } | |
| 4 | opeq1 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐵 〉 = 〈 𝐵 , 𝐵 〉 ) | |
| 5 | 4 | sneqd | ⊢ ( 𝐴 = 𝐵 → { 〈 𝐴 , 𝐵 〉 } = { 〈 𝐵 , 𝐵 〉 } ) |
| 6 | 2 | snopeqopsnid | ⊢ { 〈 𝐵 , 𝐵 〉 } = 〈 { 𝐵 } , { 𝐵 } 〉 |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 = 𝐵 → { 〈 𝐴 , 𝐵 〉 } = 〈 { 𝐵 } , { 𝐵 } 〉 ) |
| 8 | 3 7 | eqtrid | ⊢ ( 𝐴 = 𝐵 → 𝐺 = 〈 { 𝐵 } , { 𝐵 } 〉 ) |
| 9 | snex | ⊢ { 𝐵 } ∈ V | |
| 10 | 9 9 | opelvv | ⊢ 〈 { 𝐵 } , { 𝐵 } 〉 ∈ ( V × V ) |
| 11 | 8 10 | eqeltrdi | ⊢ ( 𝐴 = 𝐵 → 𝐺 ∈ ( V × V ) ) |
| 12 | 1 2 3 | funsndifnop | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ ( V × V ) ) |
| 13 | 12 | necon4ai | ⊢ ( 𝐺 ∈ ( V × V ) → 𝐴 = 𝐵 ) |
| 14 | 11 13 | impbii | ⊢ ( 𝐴 = 𝐵 ↔ 𝐺 ∈ ( V × V ) ) |