This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funeu | |- ( ( Fun F /\ A F B ) -> E! y A F y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun F -> Rel F ) |
|
| 2 | releldm | |- ( ( Rel F /\ A F B ) -> A e. dom F ) |
|
| 3 | 1 2 | sylan | |- ( ( Fun F /\ A F B ) -> A e. dom F ) |
| 4 | eldmg | |- ( A e. dom F -> ( A e. dom F <-> E. y A F y ) ) |
|
| 5 | 4 | ibi | |- ( A e. dom F -> E. y A F y ) |
| 6 | 3 5 | syl | |- ( ( Fun F /\ A F B ) -> E. y A F y ) |
| 7 | funmo | |- ( Fun F -> E* y A F y ) |
|
| 8 | 7 | adantr | |- ( ( Fun F /\ A F B ) -> E* y A F y ) |
| 9 | moeu | |- ( E* y A F y <-> ( E. y A F y -> E! y A F y ) ) |
|
| 10 | 8 9 | sylib | |- ( ( Fun F /\ A F B ) -> ( E. y A F y -> E! y A F y ) ) |
| 11 | 6 10 | mpd | |- ( ( Fun F /\ A F B ) -> E! y A F y ) |