This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by Alexander van der Vekens, 23-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftp.a | ⊢ 𝐴 ∈ V | |
| ftp.b | ⊢ 𝐵 ∈ V | ||
| ftp.c | ⊢ 𝐶 ∈ V | ||
| ftp.d | ⊢ 𝑋 ∈ V | ||
| ftp.e | ⊢ 𝑌 ∈ V | ||
| ftp.f | ⊢ 𝑍 ∈ V | ||
| ftp.g | ⊢ 𝐴 ≠ 𝐵 | ||
| ftp.h | ⊢ 𝐴 ≠ 𝐶 | ||
| ftp.i | ⊢ 𝐵 ≠ 𝐶 | ||
| Assertion | ftp | ⊢ { 〈 𝐴 , 𝑋 〉 , 〈 𝐵 , 𝑌 〉 , 〈 𝐶 , 𝑍 〉 } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftp.a | ⊢ 𝐴 ∈ V | |
| 2 | ftp.b | ⊢ 𝐵 ∈ V | |
| 3 | ftp.c | ⊢ 𝐶 ∈ V | |
| 4 | ftp.d | ⊢ 𝑋 ∈ V | |
| 5 | ftp.e | ⊢ 𝑌 ∈ V | |
| 6 | ftp.f | ⊢ 𝑍 ∈ V | |
| 7 | ftp.g | ⊢ 𝐴 ≠ 𝐵 | |
| 8 | ftp.h | ⊢ 𝐴 ≠ 𝐶 | |
| 9 | ftp.i | ⊢ 𝐵 ≠ 𝐶 | |
| 10 | 1 2 3 | 3pm3.2i | ⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) |
| 11 | 4 5 6 | 3pm3.2i | ⊢ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V ) |
| 12 | 7 8 9 | 3pm3.2i | ⊢ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) |
| 13 | ftpg | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → { 〈 𝐴 , 𝑋 〉 , 〈 𝐵 , 𝑌 〉 , 〈 𝐶 , 𝑍 〉 } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 } ) | |
| 14 | 10 11 12 13 | mp3an | ⊢ { 〈 𝐴 , 𝑋 〉 , 〈 𝐵 , 𝑌 〉 , 〈 𝐶 , 𝑍 〉 } : { 𝐴 , 𝐵 , 𝐶 } ⟶ { 𝑋 , 𝑌 , 𝑍 } |